Background
Historically, mRNA measurements have been tested on several commercially available platforms, but none have gained broad acceptance for assessment of HER2. An mRNA measurement, as a continuous value, has the potential for use in adjudication of the equivocal category. Here we use a real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay in a closed, single-use cartridge, automated system.
Methods
Multiple cores (1mm in diameter) were retrospectively collected from 80 formalin-fixed paraffin-embedded (FFPE) tissue blocks with invasive breast cancer seen by Yale Pathology Labs between 1998 and 2011. Tissue cores were processed with a FFPE lysis kit to create lysates that were tested with the automated RT-qPCR assay. Results for IHC and FISH were extracted from the pathology reports and quantitative immunofluorescence (QIF) for each case was measured as previously described.
Results
Quality control testing showed that the GX platform RT-qPCR shows no case to case cross contamination on material from routine histology practices. Concordance between RT-qPCR and IHC/FISH was 91.25% (sensitivity = 0.87; specificity = 0.94; PPV = 0.89; NPV = 0.92) using a pre-defined delta Ct cut-off (dCt ≥ −1) for HER2. Concordance (OPA) between RT-qPCR and QIF was 94% (sensitivity = 0.90; specificity = 0.96; PPV = 0.93; NPV = 0.94) using dCt ≥ −1 and a previously defined cut-point for positivity by QIF.
Conclusions
The closed system RT-qPCR assay shows greater than 90% concordance with the ASCO/CAP HER2 IHC/FISH scoring. Additionally, the RT-qPCR assay is highly concordant (94%) with the continuous variable HER2 QIF assay, and may better reflect the true continuum of HER2 receptor status in invasive breast cancer. These initial results suggest that fast, closed system molecular assays may have future value for the adjudication of the ASCO/CAP HER2 equivocal category or possibly routine usage in time constrained or low resource settings.