China-Pakistan economic corridor (CPEC), a critical part of the Belt and Road initiative (BRI), is subjected to rapid infrastructure development, which may lead to potential eco-environmental vulnerability. This study uses multi-source geo-information, and the multi-criteria decision-making (MCDM)-based best–worst method (BWM) to quantify the baseline eco-environmental vulnerability of one key CPEC sector—the Punjab province. The Punjab province is an important connection between northern and southern CPEC routes in Pakistan. In this study, we have established an indicator system consisting of twenty-two influential factors in a geospatial database to conduct eco-environmental vulnerability analysis. The overall setup is supported by a geographic information system (GIS) to perform spatial analysis. The resulting map was categorized into five vulnerability levels: very low, low, medium, high, and very high. The results revealed that the overall eco-environmental health of the Punjab province is reasonably good as 4.64% and 59.45% area of the key sector lies in ‘very low’ and ‘low’ vulnerability categories; however, there also exist highly vulnerable areas, particularly in the proximity of CPEC projects. Although high vulnerability areas constitute a very small percentage, only 0.08% of the Punjab province, still, decision-makers need to be aware of those regions and make corresponding protection strategies. Our study demonstrated that the MCDM-BWM-based EVA model could be effectively used to quantify vulnerability in other areas of CPEC. The findings of the study emphasize that management policies should be aligned with research-based recommendations for ecological protection, natural resource utilization, and sustainable development in regions participating in Belt and Road Initiative (BRI).