The adoption of robot technology is accelerating in healthcare settings. Care robots can support and extend the work of caregivers in assisting patients, elderly or children. Typical examples of such systems are 'cognitive therapeutic robots,' 'physical rehabilitation robots,' 'assistive and lifting robots.' Although these robots might reduce the workload of care workers, and be a cost-efficient solution against healthcare system cuts, the insertion of such technologies may also raise ethical, legal and societal concerns concerning users. In this article, we describe some of these concerns, including cognitive safety, prospective liability, and privacy. We argue that the current regulatory framework for care robot technology is ill-prepared to address such multidisciplinary concerns because it only focuses on physical safety requirements, whereas it disregards other issues arising from the human-robot interaction. We support the idea that design plays a significant role in shaping the technology to meet the needs of the users and the goals set by the regulation. To illustrate practical challenges, in this article we consider as an example the case of lower-limb exoskeletons. This example helps illuminate the overarching idea of the article, that is, that regulation, design, and human needs need to intertwine and mutually shape each other to serve the solutions these technologies proclaim.