Background
Interventions to increase brown adipose tissue (BAT) volume and activation are being extensively investigated as therapies to decrease the body weight in obese subjects. Noninvasive methods to monitor these therapies in animal models and humans are rare. We investigated whether contrast ultrasound (CU) performed in mice could detect BAT and measure its activation by monitoring BAT blood flow. After validation, CU was used to study the role of uncoupling protein 1 (UCP1) and nitric oxide synthases in the acute regulation of BAT blood flow.
Methods and Results
Blood flow of interscapular BAT was assessed in mice (n=64) with CU by measuring the signal intensity of continuously infused contrast microbubbles. Blood flow of BAT estimated by CU was 0.5±0.1 (mean±SEM) dB/s at baseline and increased 15-fold during BAT stimulation by norepinephrine (NE, 1 μg·kg−1·min−1). Assessment of BAT blood flow using CU was correlated to that performed with fluorescent microspheres (R2=0.86, p<0.001). To evaluate whether intact BAT activation is required to increase BAT blood flow, CU was performed in UCP1-deficient (UCP1−/−) mice with impaired BAT activation. Norepinephrine infusion induced a smaller increase in BAT blood flow in UCP1−/− mice than in wild-type mice. Finally, we investigated whether NOS played a role in acute NE-induced changes of BAT blood flow. Genetic and pharmacologic inhibition of NOS3 attenuated the NE-induced increase in BAT blood flow.
Conclusions
These results indicate that CU can detect BAT in mice, and estimate BAT blood flow in mice with functional differences in BAT.