Abstract. This article is devoted to the long-term dynamics of a parabolic-hyperbolic system arising in superconductivity. In the literature, the existence and uniqueness of the solution have been investigated but, to our knowledge, no asymptotic result is available. For the bidimensional model we prove that the system generates a dissipative semigroup in a proper phase-space where it possesses a (regular) global attractor. Then, we show the existence of an exponential attractor whose basin of attraction coincides with the whole phase-space. Thus, in particular, this exponential attractor contains the global attractor which, as a consequence, is of finite fractal dimension.