Machinery traffic intensification has been recurrent in intensive agriculture in annual crops, which may lead to structural soil degradation and, consequently, a reduction of its productive capacity. Therefore, this study aimed to assess the influence of tractor traffic intensification on soil physical attributes and soybean yield components. The study was performed in an Oxisol under no-tillage for 10 years, using a randomized block design with five tractor traffic intensities (0, 2, 4, 6, 8, and 12 passes) and five replications. Density, porosity, macroporosity, microporosity, and penetration resistance were assessed in the soil and stem diameter, number of pods per plant, number of grains per pod, grain weight per plant, thousand-grain weight, and grain yield were assessed in the soybean crop. Tractor traffic intensification changed soil physical attributes, which were not limiting factors to soybean yield under the no-tillage system, providing higher stem diameter, number of pods per plant, grain weight per plant, and grain yield after 12 passes.