Rationale
Social stress contributes to the development of depressive and anxiety symptomatology and promotes pro-inflammatory signaling in the central nervous system. In this study, we explored the effects of a lipid messenger with anti-inflammatory properties – oleoylethanolamide (OEA) – on the behavioral deficits caused by social stress in both male and female mice.
Methods
Adult mice were assigned to an experimental group according to the stress condition (control or stress) and treatment (vehicle or OEA, 10 mg/kg, i.p.). Male mice in the stress condition underwent a protocol consisting of four social defeat (SD) encounters. In the case of female mice, we employed a procedure of vicarious SD. After the stress protocol resumed, anxiety, depressive-like behavior, social interaction, and prepulse inhibition (PPI) were assessed. In addition, we characterized the stress-induced inflammatory profile by measuring IL-6 and CX3CL1 levels in the striatum and hippocampus.
Results
Our results showed that both SD and VSD induced behavioral alterations. We found that OEA treatment restored PPI deficits in socially defeated mice. Also, OEA affected differently stress-induced anxiety and depressive-like behavior in male and female mice. Biochemical analyses showed that both male and female stressed mice showed increased levels of IL-6 in the striatum compared to control mice. Similarly, VSD female mice exhibited increased striatal CX3CL1 levels. These neuroinflammation-associated signals were not affected by OEA treatment.
Conclusions
In summary, our results confirm that SD and VSD induced behavioral deficits together with inflammatory signaling in the striatum and hippocampus. We observed that OEA treatment reverses stress-induced PPI alterations in male and female mice. These data suggest that OEA can exert a buffering effect on stress-related sensorimotor gating behavioral processing.