<p style='text-indent:20px;'>This paper contains results about the existence, uniqueness and stability of solutions for the damped nonlinear extensible beam equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ u_{tt}+\Delta ^2u-M(\|\nabla u(t)\|^2)\Delta u+\|\Delta u(t)\|^{2\alpha}\,|u_t|^{\gamma}u_t = 0\ \mbox{ in } \ \Omega \times \mathbb{R}^+, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \alpha>0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ \gamma\ge 0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ \Omega\subset \mathbb{R}^n $\end{document}</tex-math></inline-formula> is a bounded domain with smooth boundary <inline-formula><tex-math id="M4">\begin{document}$ \Gamma = \partial \Omega $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M5">\begin{document}$ M $\end{document}</tex-math></inline-formula> is a nonlocal function that represents beam's extensibility term. The novelty of the work is to consider the damping as a product of a degenerate and nonlocal term with a nonlinear function. This work complements the recent article by Cavalcanti et al. [<xref ref-type="bibr" rid="b8">8</xref>] who treated this model with degenerate nonlocal weak (and strong) damping. The main result of the work is to show that for regular initial data the energy associated with the problem proposed goes to zero when <inline-formula><tex-math id="M6">\begin{document}$ t $\end{document}</tex-math></inline-formula> goes to infinity.</p>