There are considerable limitations associated with the standard 2D imaging currently used for the diagnosis and surgical planning of cam-type femoroacetabular impingement syndrome (FAIS). The aim of this study was to determine the accuracy of a new patient-specific shape-fitting method that quantifies cam morphology in 3D based solely on preoperative MRI imaging. Preoperative and postoperative 1.5T MRI scans were performed on n = 15 patients to generate 3D models of the proximal femur, in turn used to create the actual and the virtual cam. The actual cams were reconstructed by subtracting the postoperative from the preoperative 3D model and used as reference, while the virtual cams were generated by subtracting the preoperative 3D model from the virtual shape template produced with the shape-fitting method based solely on preoperative MRI scans. The accuracy of the shape-fitting method was tested on all patients by evaluating the agreement between the metrics of height, surface area, and volume that quantified virtual and actual cams. Accuracy of the shape-fitting method was demonstrated obtaining a 97.8% average level of agreement between these metrics. In conclusion, the shape-fitting technique is a noninvasive and patientspecific tool for the quantification and localization of cam morphology. Future studies will include the implementation of the technique within a clinically based software for diagnosis and surgical planning for cam-type FAIS.