2014 International Conference on Contemporary Computing and Informatics (IC3I) 2014
DOI: 10.1109/ic3i.2014.7019807
|View full text |Cite
|
Sign up to set email alerts
|

Automatic quality evaluation of fruits using Probabilistic Neural Network approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
9
0
1

Year Published

2015
2015
2024
2024

Publication Types

Select...
5
5

Relationship

0
10

Authors

Journals

citations
Cited by 33 publications
(10 citation statements)
references
References 7 publications
0
9
0
1
Order By: Relevance
“…It is concluded that with Gabor based global segmentation of near infra-red (NIR) apple images there is no need of local feature segmentation. The Gabor filter used can extract specific frequency components that can be used for segmentation [32,108]. Recently, Otsu based segmentation has been used for fruit and vegetable defect detection and a common limitation of holes generation for similar intensity level as background has been identified [39,40,57,81].…”
Section: Segmentationmentioning
confidence: 99%
“…It is concluded that with Gabor based global segmentation of near infra-red (NIR) apple images there is no need of local feature segmentation. The Gabor filter used can extract specific frequency components that can be used for segmentation [32,108]. Recently, Otsu based segmentation has been used for fruit and vegetable defect detection and a common limitation of holes generation for similar intensity level as background has been identified [39,40,57,81].…”
Section: Segmentationmentioning
confidence: 99%
“…El color como evaluación de calidad de las frutas es solo una característica, a la que se le pueden sumar otras, como lo plantean Ashok y Vinod (27); estos proponen el uso de un clasificador de red neuronal probabilístico, al cual se le ingresan como datos de entrada los atributos externos de la manzana: el color, el tamaño, la forma, la textura y la presencia de daños. Consideraron Ashok y Vinod 20 imágenes del color de la manzana sin daños y 45 imágenes de la manzana con daños; la red neuronal fue capaz de distinguir el cambio en las características de la fruta con una exactitud de 86,52 % y 88.33 %.…”
Section: )unclassified
“…Asho and Vinod [7] proposed a system for quality evaluation of fruits which is based on neural network. In proposed system test has been done on apple fruit.…”
Section: Related Workmentioning
confidence: 99%