Jatropha curcas, an economically important biofuel feedstock with oil-rich seeds, has attracted considerable attention among researchers in recent years. Nevertheless, valuable information on the yield component of this plant, particularly regarding ovule development, remains scarce. In this study, transcriptome profiles of anther and ovule development were established to investigate the ovule development mechanism of J. curcas. In total, 64,325 unigenes with annotation were obtained, and 1723 differentially expressed genes (DEGs) were identified between different stages. The DEG analysis showed the participation of five transcription factor families (bHLH, WRKY, MYB, NAC and ERF), five hormone signaling pathways (auxin, gibberellic acid (GA), cytokinin, brassinosteroids (BR) and jasmonic acid (JA)), five MADS-box genes (AGAMOUS-2, AGAMOUS-1, AGL1, AGL11, and AGL14), SUP and SLK3 in ovule development. The role of GA and JA in ovule development was evident with increases in flower buds during ovule development: GA was increased approximately twofold, and JA was increased approximately sevenfold. In addition, the expression pattern analysis using qRT-PCR revealed that CRABS CLAW and AGAMOUS-2 were also involved in ovule development. The upregulation of BR signaling genes during ovule development might have been regulated by other phytohormone signaling pathways through crosstalk. This study provides a valuable framework for investigating the regulatory networks of ovule development in J. curcas.