Information, such as text printed on paper or images projected onto microfilm, can survive for over 500 years. However, the storage of digital information for time frames exceeding 50 years is challenging. Here we show that digital information can be stored on DNA and recovered without errors for considerably longer time frames. To allow for the perfect recovery of the information, we encapsulate the DNA in an inorganic matrix, and employ error-correcting codes to correct storage-related errors. Specifically, we translated 83 kB of information to 4991 DNA segments, each 158 nucleotides long, which were encapsulated in silica. Accelerated aging experiments were performed to measure DNA decay kinetics, which show that data can be archived on DNA for millennia under a wide range of conditions. The original information could be recovered error free, even after treating the DNA in silica at 70 8C for one week. This is thermally equivalent to storing information on DNA in central Europe for 2000 years.Prehistorical information put down by our ancestors in cave drawings, texts engraved in gold, and medieval texts are some of the strongest links with our past. An example is the Archimedes Palimpsest that originates from the tenth century. This contains the single known copy of "The Methods of Mechanical Theorems", and represents a cornerstone in the development of geometry and modern calculus. The book has survived more than 1000 years and in 1998 was valued at more than two million USD. In view of this valuation of information it may seem surprising that current efforts of guaranteeing longevity of digital information are scarce (e.g. MDisc, Syylex) and the storage half-life of information has dropped drastically since the transition from analog to digital storage systems.[1]Traditional storage technologies such as optical and magnetic devices are not reliable for long-term (> 50 years) data storage.[2] Furthermore, the development of reliable systems requires long-term testing, which is well above the current device-development timelines. DNA is the only datastorage medium for which real long-term data are available from archeology. Most recently, 300 000 year old mitochondrial DNA from bears and humans has been sequenced. [3] DNA has also previously been utilized as a coding language, for applications in forensics, [4] product tagging, [5] and DNA computing.[6] As a consequence, several approaches to store information on DNA have been proposed. [7] However, those approaches are not reliable as they cannot handle errors efficiently and do not suggest how to (physically) store the DNA to maintain its stability over time.To overcome these issues we combined an error-correcting information-encoding scheme tailored to DNA (Scheme 1) with a previously established chemical method for storing DNA in "synthetic fossils". The corresponding experiments show that only by the combination of the two concepts, could digital information be recovered from DNA stored at the Global Seed Vault (at À18 8C) after over 1 milli...