The average power-handling capability (APHC) of the signal line in finiteground coplanar waveguides (FGCPWs) on polyimide and GaAs substrates is evaluated in this paper. In our approach, the ohmic loss of metal lines is characterized in different ways, and the effects of an irregular edge shape are also considered. The rise in temperature of the signal line is determined by single-and double-layer thermal models, with the temperature-dependent properties of the thermal conductivity of GaAs material treated appropriately. Parametric studies are carried out to investigate the overall effects of signal-line width, thickness, conductivity, edge-shape angle, and polyimide thickness on APHC. Some possible ways to enhance the APHC of these FGCPWs are also proposed. © 2005 Wiley Periodicals, Inc. Int J RF and Microwave CAE 15: 156 -163, 2005.