Background & purpose: Metallic prostheses distort the magnetic field during magnetic resonance imaging (MRI), leading to geometric distortions and signal loss. The purpose of this work was to develop a method to determine eligibility for MRI-guided radiotherapy (MRIgRT) on a per patient basis by estimating the magnitude of geometric distortions inside the clinical target volume (CTV). Materials & methods: Three patients with prostate cancer and hip prosthesis, treated using MRIgRT, were included. Eligibility for MRIgRT was based on computed tomography and associated CTV delineations, together with a field-distortion (B0) map and anatomical images acquired during MR simulation. To verify the method, B0 maps made during MR simulation and each MRIgRT treatment fraction were compared. Results: Estimates made during MR simulation of the magnitude of distortions inside the CTV were 0.43 mm, 0.19 mm and 2.79 mm compared to the average over all treatment fractions of 1.40 mm, 0.32 mm and 1.81 mm, per patient respectively. Conclusions: B0 map acquisitions prior to treatment can be used to estimate the magnitude of distortions during MRIgRT to guide the decision on eligibility for MRIgRT of prostate cancer patients with metallic hip implants.