The first clinical MR-IGRT system was validated for real-time tracking and gating capabilities and shown to be reliable and accurate. Patient workflow methods were developed for efficient treatment. Periodic quality assurance tests can be efficiently performed with commercially available equipment to ensure accurate system performance.
PurposeStereotactic body radiation therapy (SBRT) is an effective treatment for oligometastatic or unresectable primary malignancies, although target proximity to organs at risk (OARs) within the ultracentral thorax (UCT) limits safe delivery of an ablative dose. Stereotactic magnetic resonance (MR)–guided online adaptive radiation therapy (SMART) may improve the therapeutic ratio using reoptimization to account for daily variation in target and OAR anatomy. This study assessed the feasibility of UCT SMART and characterized dosimetric and clinical outcomes in patients treated for UCT lesions on a prospective phase 1 trial.Methods and MaterialsFive patients with oligometastatic (n = 4) or unresectable primary (n = 1) UCT malignancies underwent SMART. Initial plans prescribed 50 Gy in 5 fractions with goal 95% planning target volume (PTV) coverage by 95% of prescription, subject to strict OAR constraints. Daily real-time online adaptive plans were created as needed to preserve hard OAR constraints, escalate PTV dose, or both, based on daily setup MR image set anatomy. Treatment times, patient outcomes, and dosimetric comparisons were prospectively recorded.ResultsAll initial and daily adaptive plans met strict OAR constraints based on simulation and daily setup MR imaging anatomy, respectively. Four of the 5 patients received ≥1 adapted fraction. Ten of the 25 total delivered fractions were adapted. A total of 30% of plan adaptations were performed to improve PTV coverage; 70% were for reversal of ≥1 OAR violation. Local control by Response Evaluation Criteria in Solid Tumors was 100% at 3 and 6 months. No grade ≥3 acute (within 6 months of radiation completion) treatment-related toxicities were identified.ConclusionsSMART may allow PTV coverage improvement and/or OAR sparing compared with nonadaptive SBRT and may widen the therapeutic index of UCT SBRT. In this small prospective cohort, we found that SMART was clinically deliverable to 100% of patients, although treatment delivery times surpassed our predefined, timing-based feasibility endpoint. This technique is well tolerated, offering excellent local control with no identified acute grade ≥3 toxicity.
The presence of a magnetic field affects crystal orientation and polymerization during irradiation, where netOD decreased by an average of 8.7%, 8.0%, and 4.3% in the red, green, and blue channels, respectively. The under response was dependent on dose and differed by up to 15% at 17.6 Gy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.