Purpose: Daily online adaptive plan quality in magnetic resonance imaging guided radiation therapy (MRgRT) is difficult to assess in relation to the fully optimized, high quality plans traditionally established offline. Machine learning prediction models developed in this work are capable of predicting 3D dose distributions, enabling the evaluation of online adaptive plan quality to better inform adaptive decisionmaking in MRgRT. Methods: Artificial neural networks predicted 3D dose distributions from input variables related to patient anatomy, geometry, and target/organ-at-risk relationships in over 300 treatment plans from 53 patients receiving adaptive, linac-based MRgRT for abdominal cancers. The models do not include any beam related variables such as beam angles or fluence and were optimized to balance errors related to raw dose and specific plan quality metrics used to guide daily online adaptive decisions. Results: Averaged over all plans, the dose prediction error and the absolute error were 0.1 ± 3.4 Gy (0.1 ± 6.2%) and 3.5 ± 2.4 Gy (6.4 ± 4.3%) respectively. Plan metric prediction errors were −0.1 ± 1.5%, −0.5 ± 2.1%, −0.9 ± 2.2 Gy, and 0.1 ± 2.7 Gy for V95, V100, D95, and D mean respectively. Plan metric prediction