COVID-19 or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appeared throughout the World and currently affected more than 9 million people and caused the death of around 470,000 patients. The novel strain of the coronavirus disease is transmittable at a devastating rate with a high rate of severe hospitalization even more so for the elderly population. Naso-oro-pharyngeal swab samples as the first step towards detecting suspected infection of SARS-CoV-2 provides a non-invasive method for PCR testing at a high confidence rate. Furthermore, proteomics analysis of PCR positive and negative nasooropharyngeal samples provides information on the molecular level which highlights disease pathology. Samples from 15 PCR positive cases and 15 PCR negative cases were analyzed with nanoLC-MS/MS to identify the differentially expressed proteins. Proteomic analyses identified 207 proteins across the sample set and 17 of them were statistically significant. Protein-protein interaction analyses emphasized pathways like Neutrophil degranulation, Innate Immune System, Antimicrobial Peptides. Neutrophil Elastase (ELANE), Azurocidin (AZU1), Myeloperoxidase (MPO), Myeloblastin (PRTN3), Cathepsin G (CTSG) and Transcobalamine-1 (TCN1) were found to be significantly altered in naso-oropharyngeal samples of SARS-CoV-2 patients. The identified proteins are linked to alteration in the innate immune system specifically via neutrophil degranulation and NETosis.
Improved soft-tissue visualization, afforded by magnetic resonance imaging integrated into a radiation therapy linear accelerator-based radiation delivery system (MR-linac) promises improved image-guidance. The availability of MR-imaging can facilitate on-table adaptive radiation planning and enable real-time intra-fraction imaging with beam gating without additional exposure to radiation. However, the novel use of magnetic resonance-guided radiation therapy (MRgRT) in the field of radiation oncology also potentially poses challenges for routine clinical implementation. Herein the early experience of a single institution, implementing the first MRgRT system in the country is reported. We aim to describe the workflow and to characterize the clinical utility and feasibility of routine use of an MR-linac system.
In recent years, an increasing number of research papers revealed that the compositional and volumetric alterations in the extracellular matrix are the consequences of aging and may be related to Alzheimer's disease (AD). In this study, we aimed to demonstrate the alterations in hippocampal extracellular fluid proteins in vivo using the 5XFAD mouse model. Samples were obtained from hippocampi of 5XFAD mice (n = 6) and their non-transgenic littermates by intracerebral push-pull perfusion technique at 3 months of age, representing the pre-pathological stage of the AD. Proteins in the hippocampal perfusates were analyzed by Ultra Performance Liquid Chromatography-Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry (UPLC-ESI-qTOF-MS/MS). 178 proteins were identified and 19 proteins of them were found to be statistically significantly altered (p≤0.05, fold change ≥40%, unique peptide count ≥3) in the hippocampal CA1 extracellular fluid of the 5XFAD mouse model. Ingenuity pathway analysis of the protein expression results identified IL6 as an upstream regulator. The upregulation of IL6 was validated by immunohistochemical staining of the hippocampus and cortex of the 5XFAD mice prior to Aβ plaque formation. Furthermore, the iron level in the hippocampus was measured by inductively coupled plasma-mass spectrometry as IL6 is mentioned in several studies to take part in iron homeostasis and inflammation and found to be increased in 5XFAD mice hippocampus. Alterations in extracellular matrix proteins in addition to increasing amount of hippocampal IL6 and iron in the early stages of AD may reveal inflammation-mediated iron dyshomeostasis in the early stages of neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.