The delivery and distribution of nutrients in coastal wetland ecosystems is much related to the land use. The spatial variations of TOC, TN, NH4+-N, NO3−-N and TP and associated soil salinity with depth in 9 kinds land uses in coastal zone of the modern Yellow River Delta (YRD) was evaluated based on monitoring data in field from 2009 to 2015. The results showed that the average contents of soil TOC, TN, NO3−-N, NH4+-N and TP were 4.21 ± 2.40 g kg−1, 375.91 ± 213.44, 5.36 ± 9.59 and 7.20 ± 5.58 and 591.27 ± 91.16 mg kg−1, respectively. The high N and C contents were found in cropland in southern part and low values in natural wetland, while TP was relatively stable both in profiles and in different land uses. The land use, land formation age and salinity were important factors influencing distributions of TOC and N. Higher contents of TOC and N were observed in older formation age lands in whole study region, while the opposite regulation were found in new-born natural wetland, indicating that the anthropogenic activities could greatly alter the original distribution regulations of nutrients in coastal natural wetlands by changing the regional land use.