Organic memory devices (OMDs) are becoming more important as a core component in flexible electronics era because of their huge potentials for ultrathin, lightweight and flexible plastic memory modules. In particular, transistor-type OMDs (TOMDs) have been gradually spotlighted due to their structural advantages possessing both memory and driving functions in single devices. Although a variety of TOMDs have been developed by introducing various materials, less attention has been paid to the stable operation at high temperatures. Here we demonstrate that the polymer nanodot-embedded alkyl silicon oxide (ASiO) hybrid materials, which are prepared by sol-gel and thermal cross-linking reactions between poly(4-vinylphenol) (PVP) and vinyltriethoxysilane, can deliver low-voltage (1~5 V) TOMDs with outstanding operation stability (>4700 cycles) at high temperatures (150 °C). The efficient low-voltage memory function is enabled by the embedded PVP nanodots with particular lattice nanostructures, while the high thermal stability is achieved by the cross-linked ASiO network structures.