In the recent past years, micropollutants that are pharmaceutically active compounds (PhACs) have been used extensively and have been discovered in raw sewage, wastewater treatment plants, effluents, surface, and groundwater with concentrations from ng/L to several μg/L. Even though many of these compounds are still not determined online, monitoring technology improvements progressed. Today's wastewater treatment plants are not constructed to remove these micropollutants yet. Conventional activated sludge processes are used in the treatment of municipal wastewater but are not specifically designed for the removal of micropollutants. The remaining pharmaceuticals mix into surface waters. At that stage, they can adversely affect the aquatic environment and may cause issues for drinking water production. As the conventional methods are insufficient for removing the micropollutants, other alternative treatment methods can be applied such as coagulation-flocculation, activated carbon adsorption (powdered activated carbon and granular activated carbon), advanced oxidation processes, membrane processes, and membrane bioreactor. It has been observed that membrane bioreactor (MBR) can achieve higher and more consistent micropollutants removal. The removal of micropollutants is based on physicochemical properties of micropollutants and the conditions of treatment. Due to recent technical innovations and cost reductions of the actual membranes, the membrane bioreactor takes attention. In this study, membrane bioreactor experiments for micropollutants in drinking use, wastewater, and surface waters were investigated in detail based on literature investigations, and the feasibility of this method was evaluated.