Circulating tumour nucleic acids (ctNAs) are released from tumours cells and can be detected in blood samples, providing a way to track tumors without requiring a tissue sample. This “liquid biopsy” approach has the potential to replace invasive, painful, and costly tissue biopsies in cancer diagnosis and management. However, a very sensitive and specific approach is required to detect relatively low amounts of mutant sequences linked to cancer because they are masked by the high levels of wild‐type sequences. This review discusses high‐performance nucleic acid biosensors for ctNA analysis in patient samples. We compare sequencing‐ and amplification‐based methods to next‐generation sensors for ctDNA and ctRNA (including microRNA) profiling, such as electrochemical methods, surface plasmon resonance, Raman spectroscopy, and microfluidics and dielectrophoresis‐based assays. We present an overview of the analytical sensitivity and accuracy of these methods as well as the biological and technical challenges they present.