We describe a technology to perform sizing and concentration analysis of double stranded DNA with a sensitivity of 10 fg/μL in an operating time of 20 min. The technology is operated automatically on a commercial capillary electrophoresis instrument using electro-hydrodynamic actuation. It relies on a new capillary device that achieves online concentration of DNA at the junction between two capillaries of different diameters, thanks to viscoelastic lift forces. Using a set of DNA ladders in the range of 100-1500 bp, we report a sizing accuracy and precision better than 3% and a concentration quantification precision of ∼20%. When the technology is applied to the analysis of clinical samples of circulating cell-free DNA (cfDNA), the measured cfDNA concentrations are in good correlation with those measured by digital PCR. Furthermore, the cfDNA size profiles indicate that the fraction of low molecular weight cfDNA in the range of 75-240 bp is a candidate biomarker to discriminate between healthy subjects and cancer patients. We conclude that our technology is efficient in analyzing highly diluted DNA samples and suggest that it will be helpful in translational and clinical research involving cfDNA.
Background: Cellular-cell free-DNA (ccfDNA) is being explored as a diagnostic and prognostic tool for various diseases including cancer. Beyond the evaluation of the ccfDNA mutational status, its fragmentation has been investigated as a potential cancer biomarker in several studies. However, probably due to a lack of standardized procedures dedicated to preanalytical and analytical processing of plasma samples, contradictory results have been published.Methods: ddPCR assays allowing the detection of KRAS wild-type and mutated sequences (KRAS p.G12V, pG12D, and pG13D) were designed to target different fragments sizes. Once validated on fragmented and non-fragmented DNA extracted from cancer cell lines, these assays were used to investigate the influence of the extraction methods on the non-mutated and mutated ccfDNA integrity reflected by the DNA integrity index (DII). The DII was then analyzed in two prospective cohorts of metastatic colorectal cancer patients (RASANC study n = 34; PLACOL study n = 12) and healthy subjects (n = 49).Results and Discussion: Our results demonstrate that ccfDNA is highly fragmented in mCRC patients compared with healthy individuals. These results strongly suggest that the characterization of ccfDNA integrity hold great promise toward the development of a universal biomarker for the follow-up of mCRC patients. Furthermore, they support the importance of standardization of sample handling and processing in such analysis.
Background In the last decade, clinical studies have investigated the clinical relevance of circulating cell-free-DNA (ccfDNA) as a diagnostic and prognosis tool in various diseases including cancers. However, limited knowledge on ccfDNA biology restrains its full development in the clinical practice. To improve our understanding, we evaluated the impact of the circadian rhythm on ccfDNA release in healthy subjects over a 24-hour period. Methods 20 healthy male subjects underwent serial blood sampling (8:00 AM, 9:00 AM, 12:00 AM, 4:00 PM, 8:00 PM, 12:00 PM, 4 AM (+1 Day) and 8 AM (+1 Day)). We performed digital droplet-based PCR (ddPCR) assays to target 2 DNA fragments (69 & 243 bp) located in the KRAS gene to determine the ccfDNA concentration and fragmentation profile. For control, half of the samples were re-analyzed by capillary miniaturized electrophoresis (BIAbooster system). Results & discussion Overall, we did not detect any influence of the circadian rhythm on ccfDNA release. Instead, we observed a decrease in the ccfDNA concentration after meal ingestion, suggesting either a post-prandial effect or a technical detection bias due to a higher plasma load in lipids and triglycerides. We also noticed a potential effect of gender, weight and creatinine levels on the ccfDNA concentration.
Circulating cell-free DNA (cfDNA) is a powerful cancer biomarker for establishing targeted therapies or monitoring patients' treatment. However, current cfDNA characterization is severely limited by its low concentration, requiring the extensive use of amplification techniques. Here we report that the µLAS technology allows us to quantitatively characterize the size distribution of purified cfDNA in a few minutes, even when its concentration is as low as 1 pg/µL. Moreover, we show that DNA profiles can be directly measured in blood plasma with a minimal conditioning process to speed up considerably speed up the cfDNA analytical chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.