2018
DOI: 10.1070/sm9039
|View full text |Cite
|
Sign up to set email alerts
|

Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
13
0
3

Year Published

2019
2019
2022
2022

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 36 publications
(16 citation statements)
references
References 21 publications
0
13
0
3
Order By: Relevance
“…In the case when along some edge more than two billiards are glued, this edge must be endowed by a permutation ∈ , where is the number of billiard sheets glued along this edge. This cell complex with such permutations on the edges is called the billiard book (see [10]). The motion of the material point on it is determined as follows: the trajectory, when it hits the edge of the billiard, moves from one elementary domain to another one, according to the assigned permutation on this edge.…”
Section: Reduction Of the Degree Of Integrals For Hamiltonian Systemsmentioning
confidence: 99%
“…In the case when along some edge more than two billiards are glued, this edge must be endowed by a permutation ∈ , where is the number of billiard sheets glued along this edge. This cell complex with such permutations on the edges is called the billiard book (see [10]). The motion of the material point on it is determined as follows: the trajectory, when it hits the edge of the billiard, moves from one elementary domain to another one, according to the assigned permutation on this edge.…”
Section: Reduction Of the Degree Of Integrals For Hamiltonian Systemsmentioning
confidence: 99%
“…Such systems were then realized using several billiards (see [4][5][6]): for a regular energy zone of a system (for any of its Q 3 ) its own billiard with the same Fomenko-Zieschang invariant was constructed. For example, for geodesic flows of Riemannian metrics (e.g., on conics [7]) and for billiards introduced by Vedyushkina on CW complexes (billiard books [8] and topological billiards [9]), the particle's energy is only a scaling parameter. It turns out that these classes are important in applications.…”
mentioning
confidence: 99%
“…Если дуги границы всех плоских столов принадлежат одному и тому же семейству квадрик с общими фокусами (возможно, вырожденному: семейству парабол или семейству окружностей и их радиусов), а перестановки на пересекающихся дугах границы коммутируют, то рассмотренные многослойные биллиарды остаются кусочно-гладко интегрируемыми по Лиувиллю. Фазовая топология таких систем, как оказалось, весьма разнообразна: В.В.Ведюшкиной, А.Т.Фоменко и их соавторами были реализованы многие топологические инварианты особенностей и слоений [3]- [6], возможных в гладких и вещественно-аналитических интегрируемых системах.…”
unclassified
“…недавний обзор [11]) в работах В.В.Ведюшкиной, А.Т.Фоменко, И.С.Харчевой и В.А.Кибкало: реализованы все невырожденные особенности ранга 1 (см. [3]), числовые метки инварианта Фоменко-Цишанга (см. [4], [5]) и базы слоений Лиувилля (см.…”
unclassified
See 1 more Smart Citation