Sewage sludge sorption and desorption measurements were conducted for nine diverse contaminants of varying polarity: caffeine, sulfamethoxazole, carbamazepine, atrazine, estradiol, ethinylestradiol, diclofenac, and, for the first time desethylatrazine and norethindrone. Two types of sorption behaviour were observed. Compounds with a log octanol-water partition coefficient, log Kow, below 3 showed little or no sorption over 48 hours of shaking, while compounds with log Kow over 3 showed 30 to 90% sorption within the first few minutes. After 6 hours of shaking, mass loss through suspected biotransformation became evident for some compounds. At the pH range considered (5.7-6.7), diclofenac (pKa 4.0, log Kow 4.5) was the only compound in which pH dependent sorption could be quantified. The log sewage sludge-water distribution coefficients, log Kd, ranged from 0.2 to 2.9, and, as expected, increased with increasing log Kow of the compound and organic carbon (OC) content of the sewage sludge. A sewage sludge precipitated with alum had a substantially lower Kd values, as well as lower OC content, compared to alum-free sludge. Desorption was studied by sequentially replacing supernatant water. With each water replacement, log Kd values tended to either remain similar (following a linear isotherm) or in some cases increase (following a Freundlich-type isotherm). The length of time required to restore equilibrium increased with each rinsing step. A literature review of reported Kd values compared well with the alum-free sludge data, but not the alum-sludge data. Sewage sludge Kd across the literature appear more consistent with increasing Kow.