The influence of climatic changes occurring since the late Miocene on Australia's eastern mesic ecosystems has received significant attention over the past 20 years. In particular, the impact of the dramatic shift from widespread rainforest habitat to a much drier landscape in which closed forest refugia were dissected by open woodland/savannah ecosystems has long been a focal point in Australian ecology and biogeography. Several specific regions along the eastern coast have been identified previously as potentially representing major biogeographical disjunctions for closed forest taxa. Initially, evidence stemmed from recognition of common zones where avian species/subspecies distributions and/or floral communities were consistently separated, but the body of work has since grown significantly with the rise of molecular phylogeographic tools and there is now a significant literature base that discusses the drivers, processes and effects of these hypothesised major biogeographical junctions (termed barriers). Here, we review the literature concerning eight major barriers argued to have influenced closed forest taxa; namely, the Laura Basin, Black Mountain Corridor, Burdekin Gap, Saint Lawrence Gap, Brisbane Valley Barrier, Hunter Valley Barrier, Southern Transition Zone and East Gippsland Barrier. We synthesise reported phylogeographical patterns and the inferred timing of influence with current climatic, vegetation and geological characteristics for each barrier to provide insights into regional evolution and seek to elicit common trends. All eight putative biogeographical barriers are characterised currently by lowland zones of drier, warmer, more open woodland and savannah habitat, with adjacent closed forest habitats isolated to upland cool, wet refugia. Molecular divergence estimates suggest two pulses of divergence, one in the early Miocene (~20–15 Mya) and a later one from the Pliocene–Pleistocene (~6–0.04 Mya). We conclude with a prospectus for future research on the eastern Australian closed forests and highlight critical issues for ongoing studies of biogeographical barriers worldwide.