Birational Geometry, Rational Curves, and Arithmetic 2013
DOI: 10.1007/978-1-4614-6482-2_5
|View full text |Cite
|
Sign up to set email alerts
|

Birational Geometry via Moduli Spaces

Abstract: Summary. In this paper we connect degenerations of Fano threefolds by projections. Using Mirror Symmetry we transfer these connections to the side of Landau-Ginzburg models. Based on that we suggest a generalization of Kawamata's categorical approach to birational geometry enhancing it via geometry of moduli spaces of Landau-Ginzburg models. We suggest a conjectural application to Hasset-Kuznetsov-Tschinkel program based on new nonrationality "invariants" we consider -gaps and phantom categories. We make sever… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
10
0
2

Year Published

2013
2013
2022
2022

Publication Types

Select...
5
1
1

Relationship

3
4

Authors

Journals

citations
Cited by 12 publications
(12 citation statements)
references
References 84 publications
0
10
0
2
Order By: Relevance
“…The final picture is obtained by gluing the configurations of surfaces shown in Figures 8-10 along Figure 11. A more detailed description of the Landau-Ginzburg model for a sextic double solid can be found in [8]. Direct calculations (see [25,27]) yield the following.…”
Section: The Landau-ginzburg Model Of a Sextic Double Solidmentioning
confidence: 99%
“…The final picture is obtained by gluing the configurations of surfaces shown in Figures 8-10 along Figure 11. A more detailed description of the Landau-Ginzburg model for a sextic double solid can be found in [8]. Direct calculations (see [25,27]) yield the following.…”
Section: The Landau-ginzburg Model Of a Sextic Double Solidmentioning
confidence: 99%
“…Unlike the two-dimensional case, there is no structure in the list of Fano threefolds (see [46]) relating one with each other systematically. An approach to get such structure is given in [15]. The idea behind the approach is the following.…”
Section: Introductionmentioning
confidence: 99%
“…Thus one can construct, in terms of spanning polytopes the needed projections. An example of nice subtree in the projections tree relating Picard rank one Fano varieties (Figure 1) is found in [15]. Moreover, one can implement mutations in the picture (see Section 4), that is deformations from one toric degeneration to another.…”
Section: Introductionmentioning
confidence: 99%

Projecting Fanos in the mirror

Kasprzyk,
Katzarkov,
Przyjalkowski
et al. 2019
Preprint
Self Cite
“…Настоящая работа является первым шагом к изучению слабых моделей Ландау-Гинзбурга трехмерных многообразий Фано. В работах [6], [8], [10] более детально изучены конкретные свойства некоторых слабых моделей Ландау-Гинзбурга и их связь с гомологической зеркальной симметрией.…”
unclassified
“…Доказать, что модель Ландау-Гинзбурга для полного пересечения в G(m, r) является слабой в общем случае (ср. проблемы10,14).…”
unclassified