The quantum mechanical density functional theory (DFT) approach was used to analyze vibrational spectroscopy for the title compound 2-chloroquinoline-3-carboxaldehyde, and the observations were compared to experimental results. B3LYP with the 6–311++ G (d, p) basis set produces the optimized molecular structure and vibrational assignments. The charge delocalization and hyper conjugative interactions were studied using NBO analysis. Fukui functions were used to determine the chemical reactivity of the examined molecule. The linear polarizability, first order polarizability, NLO and Thermodynamic properties are calculated. Additionally, Molecular electrostatic potential (MEP) and HOMO-LUMO are reported. Multi wavefunction analysis like ELF (Electron Localization Function) and LOL (Localized Orbital Locator) are analyzed. For the headline compound, drug-likeness properties were examined. Molecular docking analysis on the examined molecule are done to understand the biological functions of the headline molecule and the minimum binding energy, hydrogen bond interactions, are analyzed.