The metabolic state of pregnant mammals influences the offspring's development and risk of metabolic disease in postnatal life. The metabolic state in a lactating dairy cow differs immensely from that in a non-lactating heifer around the time of conception, but consequences for their calves are poorly understood. The hypothesis of this study was that differences in metabolic state between non-lactating heifers and lactating cows during early pregnancy would affect insulin-dependent glucose metabolism and development in their neonatal calves. Using a mixed linear model, concentrations of glucose, IGF-I and non-esterified fatty acids (NEFAs) were compared between 13 non-lactating heifers and 16 high-yielding dairy cows in repeated blood samples obtained during the 1st month after successful insemination. Calves born from these dams were weighed and measured at birth, and subjected to intravenous glucose and insulin challenges between 7 and 14 days of age. Eight estimators of insulin-dependent glucose metabolism were determined: glucose and insulin peak concentration, area under the curve and elimination rate after glucose challenge, glucose reduction rate after insulin challenge, and quantitative insulin sensitivity check index. Effects of dam parity and calf sex on the metabolic and developmental traits were analysed in a two-way ANOVA. Compared with heifers, cows displayed lower glucose and IGF-I and higher NEFA concentrations during the 1st month after conception. However, these differences did not affect developmental traits and glucose homeostasis in their calves: birth weight, withers height, heart girth, and responses to glucose and insulin challenges in the calves were unaffected by their dam's parity. In conclusion, differences in the metabolic state of heifers and cows during early gestation under field conditions could not be related to their offspring's development and glucose homeostasis.