This study aimed to characterize the endometrial transcriptome and functional pathways overrepresented in the endometrium of cows treated to ovulate larger (≥13 mm) versus smaller (≤12 mm) follicles. Nelore cows were presynchronized prior to receiving cloprostenol (large follicle [LF] group) or not (small follicle [SF] group), along with a progesterone (P4) device on Day (D) -10. Devices were withdrawn and cloprostenol administered 42-60 h (LF) or 30-36 h (SF) before GnRH agonist treatment (D0). Tissues were collected on D4 (experiment [Exp.] 1; n = 24) or D7 (Exp. 2; n = 60). Endometrial transcriptome was obtained by RNA-Seq, whereas proliferation and apoptosis were assessed by immunohistochemistry. Overall, LF cows developed larger follicles and corpora lutea, and produced greater amounts of estradiol (D-1, Exp. 1, SF: 0.7 ± 0.2; LF: 2.4 ± 0.2 pg/ml; D-1, Exp. 2, SF: 0.5 ± 0.1; LF: 2.3 ± 0.6 pg/ml) and P4 (D4, Exp. 1, SF: 0.8 ± 0.1; LF: 1.4 ± 0.2 ng/ml; D7, Exp. 2, SF: 2.5 ± 0.4; LF: 3.7 ± 0.4 ng/ml). Functional enrichment indicated that biosynthetic and metabolic processes were enriched in LF endometrium, whereas SF endometrium transcriptome was biased toward cell proliferation. Data also suggested reorganization of the extracellular matrix toward a proliferation-permissive phenotype in SF endometrium. LF endometrium showed an earlier onset of proliferative activity, whereas SF endometrium expressed a delayed increase in glandular epithelium proliferation. In conclusion, the periovulatory endocrine milieu regulates bovine endometrial transcriptome and seems to determine the transition from a proliferation-permissive to a biosynthetic and metabolically active endometrial phenotype, which may be associated with the preparation of an optimally receptive uterine environment.
The increasing number of cancer survivors the past decades, has sparked the need for fertility preservation strategies. Due to predominantly ethical constraints, human research material is scarce. A bovine in vitro model is a valuable alternative. Therefore, the following objectives were defined: 1) to xeno-graft bovine ovarian cortex tissue in immune deficient mice as a study-model for female fertility preservation strategies; 2) to stereologically quantify vascularization in Vascular Endothelial Growth Factor (VEGF)-treated and non-treated tissue; 3) to study preantral follicular survival in situ, after xenotransplantation. Bovine ovarian tissue strips were incubated with or without VEGF prior to grafting into female, neutered BALB/c-nu mice (n=16). Non-transplanted cortical tissue was used as a control. At time zero (control), two (2 weeks) and four (4 weeks) weeks after transplantation, grafts were retrieved and assessed by von Willebrand Factor and caspase-3 immunostaining. Data were analyzed using a linear mixed model. In the VEGF+ grafts, 31% of the follicles were considered 'alive' 2 weeks after transplantation, compared to only 17% in the VEGF- grafts (P<0.05). However, no difference could be detected 4 weeks after transplantation (P=0.76) with less follicles being considered 'alive' after transplantation (22%), compared to the control (47.5%) (P<0.05). Finally, the vascular surface density was significantly less in the grafts, irrespective of the transplantation period or the use of VEGF. Although the transplantation process overall negatively influenced the number of viable follicles and vascular density, VEGF exposure prior to transplantation can favor follicle survival during a 2 weeks transplantation period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.