IntroductionThe distribution of nicotine among its free-base (fb) and protonated forms in aerosolised nicotine affects inhalability. It has been manipulated in tobacco smoke and now in electronic cigarettes by the use of acids to de-freebase nicotine and form ‘nicotine salts’.MethodsMeasurements on electronic cigarette fluids (e-liquids) were carried out to determine (1) the fraction of nicotine in the free-base form (αfb) and (2) the levels of organic acid(s) and nicotine. Samples included JUUL ‘pods’, ‘look-a-like/knock-off’ pods and some bottled ‘nicotine salt’ and ‘non-salt’ e-liquids.Resultsαfb= 0.12 ±0.01 at 40°C (≈ 37°C) for 10 JUUL products, which contain benzoic acid; nicotine protonation is extensive but incomplete.DiscussionFirst-generation e-liquids have αfb ≈ 1. At cigarette-like total nicotine concentration (Nictot) values of ~60 mg/mL, e-liquid aerosol droplets with αfb≈ 1 are harsh upon inhalation. The design evolution for e-liquids has paralleled that for smoked tobacco, giving a ‘déjà vu’ trajectory for αfb. For 17th-century ‘air-cured’ tobacco, αfb in the smoke particles was likely ≥ 0.5. The product αfbNictot in the smoke particles was high. ‘Flue-curing’ retains higher levels of leaf sugars, which are precursors for organic acids in tobacco smoke, resulting in αfb ≈ 0.02 and lowered harshness. Some tobacco cigarette formulations/designs have been adjusted to restore some nicotine sensory ‘kick/impact’ with αfb≈ 0.1, as for Marlboro. Overall, for tobacco smoke, the de-freebasing trajectory was αfb ≥ 0.5 → ~0 →~0.1, as compared with αfb= ~1 →~0.1 for e-cigarettes. For JUUL, the result has been, perhaps, an optimised, flavoured nicotine delivery system. The design evolution for e-cigarettes has made them more effective as substitutes to get smokers off combustibles. However, this evolution has likely made e-cigarette products vastly more addictive for never-smokers.