The incidence of non-alcoholic steatohepatitis (NASH) is rising but the efficacy of lifestyle modifications to improve NASH-related outcomes remain unclear. We hypothesized that a western diet (WD) would induce NASH in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat and that lifestyle modification would improve this condition. Eight-week-old Long-Evans Tokushima Otsuka (L) and OLETF (O) rats consumed a control diet (10% kcal fat, 3.5% sucrose) or a WD (45% kcal fat, 17% sucrose, 1% cholesterol) for 24 weeks. At 20 weeks of age, additional WD-fed OLETFs were randomized to sedentary (O-SED), food restriction (O-FR; ∼25% kcal reduction vs. O-SED) or exercise training (O-EX; treadmill running 20 m min(-1) with a 15% incline, 60 min day(-1) , 5 days week(-1) ) conditions for 12 weeks. WD induced a NASH phenotype in OLETFs characterized by hepatic fibrosis (collagen 1α1 mRNA and hydroxyproline content), as well as elevated inflammation and non-alcoholic fatty liver disease activity scores, and hepatic stellate cell activation (α-smooth muscle actin) compared to Long-Evans Tokushima Otsuka rats. FR and EX modestly improved NASH-related fibrosis markers (FR: hydroxyproline content, P < 0.01; EX: collagen 1α1 mRNA, P < 0.05; both: fibrosis score, P < 0.01) and inflammation (both: inflammation score; FR: interleukin-1β and tumor necrosis factor α) vs. O-SED. FR reduced hepatic stellate cell activation markers (transforming growth factor-β protein and α-smooth muscle actin mRNA), whereas EX increased the hepatic stellate cell senescence marker CCN1 (P < 0.01 vs. O-SED). Additionally, both FR and EX normalized extracellular matrix remodelling markers to levels similar to L-WD (P > 0.05). Although neither EX nor FR led to complete resolution of the WD-induced NASH phenotype, both independently benefitted liver fibrosis via altered hepatic stellate cell activation and extracellular matrix remodelling.