AimThe aim of the present study was to evaluate whether activation of peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma by Bezafibrate (BZ) could attenuate hepatic and white adipose tissue (WAT) abnormalities in male offspring from diet-induced obese dams.Materials and MethodsC57BL/6 female mice were fed a standard chow (SC; 10% lipids) diet or a high-fat (HF; 49% lipids) diet for 8 weeks before mating and during gestation and lactation periods. Male offspring received SC diet at weaning and were subdivided into four groups: SC, SC/BZ, HF and HF/BZ. Treatment with BZ (100 mg/Kg diet) started at 12 weeks of age and was maintained for three weeks.ResultsThe HF diet resulted in an overweight phenotype and an increase in oral glucose intolerance and fasting glucose of dams. The HF offspring showed increased body mass, higher levels of plasmatic and hepatic triglycerides, higher levels of pro-inflammatory and lower levels of anti-inflammatory adipokines, impairment of glucose metabolism, abnormal fat pad mass distribution, higher number of larger adipocytes, hepatic steatosis, higher expression of lipogenic proteins concomitant to decreased expression of PPARalpha and carnitine palmitoyltransferase I (CPT-1) in liver, and diminished expression of PPARgamma and adiponectin in WAT. Treatment with BZ ameliorated the hepatic and WAT abnormalities generated by diet-induced maternal obesity, with improvements observed in the structural, biochemical and molecular characteristics of the animals' livers and epididymal fat.ConclusionDiet-induced maternal obesity lead to alterations in metabolism, hepatic lipotoxicity and adverse liver and WAT remodeling in the offspring. Targeting PPAR with Bezafibrate has beneficial effects reducing the alterations, mainly through reduction of WAT inflammatory state through PPARgamma activation and enhanced hepatic beta-oxidation due to increased PPARalpha/PPARgamma ratio in liver.
Fibrosis is a common feature in most pathogenetic processes in the liver, and usually results from a chronic insult that depletes the regenerative capacity of hepatocytes and activates multiple inflammatory pathways, recruiting resident and circulating immune cells, endothelial cells, non-parenchymal hepatic stellate cells, and fibroblasts, which become activated and lead to excessive extracellular matrix accumulation. The ongoing development of liver fibrosis results in a clinically silent and progressive loss of hepatocyte function, demanding the constant need for liver transplantation in clinical practice, and motivating the search for other treatments as the chances of obtaining compatible viable livers become scarcer. Although initially cell therapy has emerged as a plausible alternative to organ transplantation, many factors still challenge the establishment of this technique as a main or even additional therapeutic tool. Herein, the authors discuss the most recent advances and point out the corners and some controversies over several protocols and models that have shown promising results as potential candidates for cell therapy for liver fibrosis, presenting the respective mechanisms proposed for liver regeneration in each case.
Leishmania amazonensis activates the NF-κB transcriptional repressor homodimer (p50/p50) and promotes nitric oxide synthase (iNOS) downregulation. We investigated the role of PI3K/Akt in p50/p50 NF-κB activation and the effect on iNOS expression in L. amazonensis infection. The increased occupancy of p50/p50 on the iNOS promoter of infected macrophages was observed and we demonstrated that both p50/p50 NF-κB induction and iNOS downregulation in infected macrophages depended on PI3K/Akt activation. Importantly, the intracellular growth of the parasite was also impaired during PI3K/Akt signalling inhibition and in macrophages knocked-down for Akt 1 expression. It was also observed that the increased nuclear levels of p50/p50 in L. amazonensis-infected macrophages were associated with reduced phosphorylation of 907 Ser p105, the precursor of p50. Corroborating these data, we demonstrated the increased levels of phospho-9 Ser GSK3β in infected macrophages, which is associated with GSK3β inhibition and, consequently, its inability to phosphorylate p105. Remarkably, we found that the levels of pPTEN 370 Ser, a negative regulator of PI3K, increased due to L. amazonensis infection. Our data support the notion that PI3K/Akt activity is sustained during the parasite infection, leading to NF-κB 105 phosphorylation and further processing to originate p50/p50 homodimers and the consequent downregulation of iNOS expression.
Renovascular hypertension (RVH) is a progressive disease, leading to chronic kidney disease when untreated and no specific treatment is available. Therefore, development of new therapeutic modalities is imperative. RVH is triggered by renal artery stenosis and subsequent renin-angiotensin-aldosterone system activation; it can be experimentally induced by the 2 Kidneys-1 Clip (2K1C) model. This study investigates the therapeutic potential of renal subcapsular mesenchymal stem cell (MSC) infusion in 2K1C rats. Renal morphological and functional changes were analyzed, including Na+K-ATPase activity and expression, renin angiotensin-converting enzyme (ACE) and angiotensin-II type 1 (ATR) and type 2 (ATR) receptors expression. 2K1C rats developed hypertension accompanied by renin upregulation (clipped kidney) and renal Na+K-ATPase activity and expression reduction. MSC therapy decreased systolic blood pressure, renin, ACE, and ATR, upregulated ATR and podocin expression and restored renal Na+K-ATPase activity and expression. In addition, MSC improved renal morphology, reduced fibrosis and TGF-β expression in the clipped kidney, decreased proteinuria and restored protein plasma levels. In conclusion, transplantation into a renal subcapsule is an efficient route and MSC is a good candidate for cell therapy, which may represent an interesting approach for chronic kidney disease treatment.
Liver fibrosis results from chronic injury followed by activation of macrophages and fibrogenic cells like myofibroblasts and activated hepatic stellate cells. These fibrogenic cells express α-smooth muscle actin (α-SMA) and produce excessive extracellular matrix (ECM), with disorganization and loss of function of hepatic parenchyma. It is known that increased levels of metalloproteinases (MMPs) in liver fibrosis are associated with reduction of the pathologic ECM and fibrosis resolution. Recently, it has been shown that bone marrow mononuclear cells (BMMNCs) may reduce collagen and α-SMA expression, and ameliorate liver function in cholestatic rats. Therefore, this study aimed to analyze MMP-2, MMP-9 and MMP-13, and tissue inhibitors of MMPs (TIMPs)-1 and TIMP-2 in the liver of cholestatic rats transplanted with BMMNC. Animals were divided into normal rats, cholestatic rats obtained after 14 and 21 days of bile duct ligation (BDL), and rats obtained after 14 days of BDL that received BMMNCs and were killed after 7 days. MMP and TIMP expression was assessed by Western blotting, along with α-SMA, CD68 and CD11b expression by confocal microscopy. Western blotting analysis showed that 14-day BDL animals had significantly reduced amounts of MMP-2 and MMP-13, but increased amounts of MMP-9 compared to normal rats. After 21 days of BDL, overall MMP amounts were decreased and TIMPs were increased. BMMNC transplantation significantly increased MMP-9 and MMP-13, and decreased TIMP expression. Increased MMP activity was confirmed by zymography. MMP-9 and MMP-13 were expressed by macrophages near fibrotic septa, suggesting BMMNC may stimulate MMP production in fibrotic livers, contributing to ECM degradation and hepatic regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.