(2016) Electrochemical oxidation of dihydronicotinamide adenine dinucleotide (NADH) : Comparison of highly oriented pyrolytic graphite (HOPG) and polycrystalline boron-doped diamond (pBDD) electrodes. Physical Chemistry Chemical Physics.
Permanent WRAP URL:http://wrap.warwick.ac.uk/81637
Copyright and reuse:The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. The electro-oxidation of nicotinamide adenine dinucleotide (NADH) is studied at bare surfaces of highly oriented pyrolytic graphite (HOPG) and semi-metallic polycrystalline boron-doped diamond (pBDD). A comparison of these two carbon electrode materials is interesting because they possess broadly similar densities of electronic states that are much lower than most metal electrodes, but graphite has carbon sp 2 -hybridization, while in diamond the carbon is sp 3 -hybridised, with resulting major differences in bulk structure and surface termination. Using cyclic voltammetry (CV), it is shown that NADH oxidation is facile at HOPG surfaces but the reaction products tend to strongly adsorb, which causes rapid deactivation of the electrode activity. This is an important factor that needs to be taken into account when assessing HOPG and its intrinsic activity. It is also shown that NADH itself adsorbs at HOPG, a fact that has not been recognized previously, but has implications for understanding the mechanism of the electro-oxidation process. Although pBDD was found to be less susceptible to surface fouling, pBDD is not immune to deterioration of the electrode response, and the reaction showed more sluggish kinetics on this electrode. Scanning electrochemical cell microscopy (SECCM) highlights a significant voltammetric variation in electroactivity between different crystal surface facets that are presented to solution with a pBDD electrode. The electroactivity of different grains correlates with the local dopant level, as visualized by field emission-scanning electron microscopy. SECCM measurements further prove that the basal plane of HOPG has high activity towards NADH electro-oxidation. These new insights on NADH voltammetry are useful for the design of optimal carbon-based electrodes for NADH electroanalysis.