Emotions play an important role in human interaction and decision-making processes. Frontal asymmetry in brain activity is a promising neurophysiological indicator of emotion. Emotions are psychologically explained by the valence-arousal model, but as yet, frontal asymmetry has not been fully explained by this model. In this study, we explored frontal asymmetry of emotions based on the valence-arousal model using the same auditory stimulus. Changes in emotional states using self-report questionnaires were investigated before and after the auditory stimulus. Spectral power and weighted phase lag index were calculated in the delta, theta, alpha, beta, and gamma bands. Phase-amplitude coupling was also measured to explore communication among different frequency bands associated with emotions. After the auditory stimulus, alpha power decreased in both left and right frontal regions and the deltaweighted phase lag index in the left-right regions was increased. However, no frontal asymmetry was identified after the auditory stimulus. Additionally, we explored the brain changes according to the valencearousal model based on emotional states. After the auditory stimulus, frontal asymmetry of alpha power was clearly observed only for negative valence. This finding was possible because subjective emotions were considered despite listening to the same stimulus. Finally, phase-amplitude coupling identified lefthemisphere dominance after the auditory stimulus, regardless of subjective emotions. These results may help us understand frontal asymmetry associated with emotional mechanisms. In addition, these findings can be used directly in the brain-computer interface to improve emotion recognition performance for realworld practical applications. INDEX TERMS Electroencephalogram (EEG), Emotion, Frontal asymmetry, Power spectral density (PSD), Weighted phase lag index (WPLI), Phase-amplitude coupling (PAC).