Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI) environment. To improve the recognition performance, multi-channel EEG signals are usually used. A large set of EEG sensor channels will add to the computational complexity and cause users inconvenience. ReliefF-based channel selection methods were systematically investigated for EEG-based emotion recognition on a database for emotion analysis using physiological signals (DEAP). Three strategies were employed to select the best channels in classifying four emotional states (joy, fear, sadness and relaxation). Furthermore, support vector machine (SVM) was used as a classifier to validate the performance of the channel selection results. The experimental results showed the effectiveness of our methods and the comparison with the similar strategies, based on the F-score, was given. Strategies to evaluate a channel as a unity gave better performance in channel reduction with an acceptable loss of accuracy. In the third strategy, after adjusting channels’ weights according to their contribution to the classification accuracy, the number of channels was reduced to eight with a slight loss of accuracy (58.51% ± 10.05% versus the best classification accuracy 59.13% ± 11.00% using 19 channels). In addition, the study of selecting subject-independent channels, related to emotion processing, was also implemented. The sensors, selected subject-independently from frontal, parietal lobes, have been identified to provide more discriminative information associated with emotion processing, and are distributed symmetrically over the scalp, which is consistent with the existing literature. The results will make a contribution to the realization of a practical EEG-based emotion recognition system.
Objective. Brain-controlled robotic arms have shown broad application prospects with the development of robotics, science and information decoding. However, disadvantages, such as poor flexibility restrict its wide application. Approach. In order to alleviate these drawbacks, this study proposed a robotic arm asynchronous control system based on steady-state visual evoked potential (SSVEP) in an augmented reality (AR) environment. In the AR environment, the participants were able to concurrently see the robot arm and visual stimulation interface through the AR device. Therefore, there was no need to switch attention frequently between the visual stimulation interface and the robotic arm. This study proposed a multi-template algorithm based on canonical correlation analysis and task-related component analysis to identify 12 targets. An optimization strategy based on dynamic window was adopted to adjust the duration of visual stimulation adaptively. Main results. Experimental results of this study found that the high-frequency SSVEP-based brain–computer interface (BCI) realized the switch of the system state, which controlled the robotic arm asynchronously. The average accuracy of the offline experiment was 94.97
%
, whereas the average information translate rate was 67.37 ± 14.27 bits·min−1. The online results from ten healthy subjects showed that the average selection time of a single online command was 2.04 s, which effectively reduced the visual fatigue of the subjects. Each subject could quickly complete the puzzle task. Significance. The experimental results demonstrated the feasibility and potential of this human-computer interaction strategy and provided new ideas for BCI-controlled robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.