Objectives Stroke is a leading cause of death and disability worldwide with limited therapeutic interventions. The current study explored proton nuclear magnetic resonance spectroscopy ( 1 H NMR)-based metabolomic approach to elucidate the effect of lercanidipine on neurometabolic alterations in transient model of ischaemic stroke in rats. Methods In the present investigation, male Wistar rats were subjected to middle cerebral artery occlusion (MCAo) for 2 h followed by reperfusion using intraluminal filament method. Rats were randomly divided into three groups as vehicle-treated sham control, vehicle-treated MCAo control and lercanidipine-treated MCAo. Vehicle or lercanidipine (0.5 mg/kg, i.p.) was administered 120 min post-reperfusion. The rat brain cortex tissues were isolated 24 h post-MCAo and were investigated by 1 H NMR spectroscopy through perchloric extraction method. Key findings A total of 23 metabolites were altered significantly after cerebral ischaemic-reperfusion injury in MCAo control as compared to sham control rats. Lercanidipine significantly reduced the levels of valine, alanine, lactate, acetate and tyrosine, while N-acetylaspartate, glutamate, glutamine, aspartate, creatine/phosphocreatine, choline, glycerophosphorylcholine, taurine, myo-inositol and adenosine di-phosphate were elevated as compared to MCAo control. Conclusions Present study illustrates effect of lercanidipine on neurometabolic alterations which might be mediated through its antioxidant, anti-inflammatory, vasodilatory and anti-apoptotic property in MCAo model of stroke.