2013
DOI: 10.1002/zamm.201300086
|View full text |Cite
|
Sign up to set email alerts
|

Breaking a magnetic zero locus: model operators and numerical approach

Abstract: This paper is devoted to the spectral analysis of a Schrödinger operator in presence of a vanishing magnetic field. The influence of the smoothness of the magnetic zero locus is studied. In particular, it is proved that breaking the magnetic zero locus induces discrete spectrum below the essential spectrum. Numerical simulations illustrate the theoretical results.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
4
0
2

Year Published

2014
2014
2021
2021

Publication Types

Select...
4
1

Relationship

2
3

Authors

Journals

citations
Cited by 6 publications
(8 citation statements)
references
References 22 publications
2
4
0
2
Order By: Relevance
“…This paper shows that the consequence of Conjecture 1 on the spectrum ofL tan θ matches with the numerical simulations of the eigenvalues in Ref. [4][5][6][7][8]. Our construction of quasimodes, which uses some normalized Hermite's functions with respect toŝ, will also agree with the behavior observed in Fig.…”
Section: Conjecturesupporting
confidence: 83%
See 1 more Smart Citation
“…This paper shows that the consequence of Conjecture 1 on the spectrum ofL tan θ matches with the numerical simulations of the eigenvalues in Ref. [4][5][6][7][8]. Our construction of quasimodes, which uses some normalized Hermite's functions with respect toŝ, will also agree with the behavior observed in Fig.…”
Section: Conjecturesupporting
confidence: 83%
“…30 and that both of them are analyzed through numerical experiments in Ref. 4. In particular the paper 4 displays new model operators which naturally appears when we break the translation invariance.…”
Section: Introductionmentioning
confidence: 99%
“…Here n is the unit normal vector to the boundary, τ 1 and τ 2 are the unit tangent vector on the intersection point x ∈ , and HessB 0 is the Hessian matrix of the magnetic field at the point x which has two non-zero eigenvalues λ Hess The case where the magnetic field vanishes non-degenerately along a smooth non self intersecting curve, is the subject of numerous works in the contexts of superconductivity [3,19,29] and semiclassical spectral asymptotics [7,10,28].…”
Section: Magnetic Field With Self-intersecting Zerosmentioning
confidence: 99%
“…(2) ζ θ 1 < M 0 , pour tout θ ∈ 0, π 2 . Ce fait est illustré numériquement dans [20]. On y trouve les courbes des valeurs propres pour différentes valeurs de l'angle θ ∈ (0, π 2 ) : On retrouve dans le graphique ci-dessus la valeur de M 0 et la courbe FIGURE 2.…”
Section: Champ S'annulant Linéairement Sur Une Droiteunclassified
“…On notera que [20], [65], [7] et [6] concernent également du cas où la ligne d'annulation du champ magnétique rencontre le bord, mais ils ne traitent pas de l'asymptotique (pour h → 0) des petites valeurs propres de P h,A,Ω . Les papiers [20] et [65] traitent en grande partie de l'influence de la régularité du champ magnétique à travers l'étude d'une ligne d'annulation brisée ( [65] étudie plus précisément la limite petit angle), tandis que [7] et [6] s'intéresse à la minimisation de la fonctionnelle de Ginzburg-Landau pour κ → +∞ (voir (1.1)). On trouve dans [58] le résultat suivant pour le premier terme de l'asymptotique : Ce résultat est le pendant du théorème 1.2, précédemment énoncé pour un champ magnétique ne s'annulant pas.…”
Section: Introductionunclassified