Droplet impact is a ubiquitous phenomenon in nature, daily life, and industrial processes. It is thus crucial to tune the impact outcomes for various applications. As a special outcome of droplet impact, the bouncing of droplets keeps the form of the droplets after the impact and minimizes the energy loss during the impact, being beneficial in many applications. A unified understanding of droplet bouncing is in high demand for effective development of new techniques to serve applications. This review shows the fundamentals, regulations, and applications of millimeter‐sized droplet bouncing on solid surfaces and same/miscible liquids (liquid pool and another droplet). Regulation methods and current applications are summarized, and potential directions are proposed.