Cryogenic characterization and modeling of 0.18µm CMOS technology (1.8V and 5V) are presented in this paper. Several PMOS and NMOS transistors with different width to length ratios(W/L) were extensively characterized under various bias conditions at temperatures ranging from 300K down to 4.2K. We extracted their fundamental physical parameters and developed a compact model based on BSIM3V3. In addition to their I-V characteristics, threshold voltage(V th ) values, on/off current ratio, transconductance of the MOS transistors, and resistors on chips are measured at temperatures from 300K down to 4.2K. A simple subcircuit was built to correct the kink effect. This work provides experimental evidence for implementation of cryogenic CMOS technology, a valid industrial tape-out process model, and promotes the application of integrated circuits in cryogenic environments, including quantum measurement and control systems for quantum chips at very low temperatures.