Brain–machine interface technology can improve the lives of spinal cord injury victims and amputees. A neural interface system, consisting of a 3D probe array and a custom low-power (1 mW) 100-channel (100-ch) neural recording application-specific integrated circuit (ASIC), was designed and implemented to monitor neural activity. In this study, a microassembly 3D probe array method using a novel lead transfer technique was proposed to overcome the bonding plane mismatch encountered during orthogonal assembly. The proposed lead transfer technique can be completed using standard micromachining and packaging processes. The ASIC can be stacking-integrated with the probe array, minimizing the form factor of the assembled module. To minimize trauma to brain cells, the profile of the integrated probe array was controlled within 730 μm. The average impedance of the assembled probe was approximately 0.55 MΩ at 1 kHz. To verify the functionality of the integrated neural probe array, bench-top signal acquisitions were performed and discussed.