It has long been recognized that diffusive boundary layers affect the determination of active transport parameters, but this has been largely overlooked in plant physiological research. We studied the short-term uptake of cadmium (Cd), zinc (Zn), and nickel (Ni) by spinach (Spinacia oleracea) and tomato (Lycopersicon esculentum) in solutions with or without metal complexes. At same free ion concentration, the presence of complexes, which enhance the diffusion flux, increased the uptake of Cd and Zn, whereas Ni uptake was unaffected. Competition effects of protons on Cd and Zn uptake were observed only at a very large degree of buffering, while competition of magnesium ions on Ni uptake was observed even in unbuffered solutions. These results strongly suggest that uptake of Cd and Zn is limited by diffusion of the free ion to the roots, except at very high degree of solution buffering, whereas Ni uptake is generally internalization limited. All results could be well described by a model that combined a diffusion equation with a competitive Michaelis-Menten equation. Direct uptake of the complex was estimated to be a major contribution only at millimolar concentrations of the complex or at very large ratios of complex to free ion concentration. The true K m for uptake of Cd 2+ and Zn 2+ was estimated at ,5 nM, three orders of magnitude smaller than the K m measured in unbuffered solutions. Published Michaelis constants for plant uptake of Cd and Zn likely strongly overestimate physiological ones and should not be interpreted as an indicator of transporter affinity.Internalization of metals by biota is traditionally described by Michaelis-Menten kinetics (Wilkinson and Buffle, 2004). The K m corresponds to the concentration in solution at which the uptake is one-half of the maximal uptake, F max . The Michaelis-Menten equation relates the uptake flux, F, to the free ion concentration at the site of uptake, [M] s :If diffusion of a metal across a diffusive boundary layer adjacent to the roots is the rate-limiting step for uptake, the concentration at the site of uptake will be lower than that in the bulk solution. As a result, diffusion limitations result in an overestimate of the K m , if the concentration at the root surface is assumed to be the same as in the bulk solution, as is usually done. This bias in K m has been discussed in detail by Winne (1973) and has, for instance, been demonstrated experimentally for uptake of Glc in rabbit jejunum (Thomson and Dietschy, 1980) and for uptake of several sugars, amino acids, and bile acids in rat ileum (Wilson and Dietschy, 1974).Models used to predict ion availability and toxicity of metals by plants usually rely on the assumption that uptake is controlled by the free metal ion activity and the activity of competing ions in the bulk solution. For instance, the biotic ligand model (BLM), originally developed to predict metal toxicity to aquatic organisms, assumes that toxicity of an ion is mitigated by the presence of competing ions that bind on the biotic ligand (Paqu...