Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Significant advances in development of the optical wavelength range require high-quality optical systems to create optoelectronic equipment on their basis characterized by high speed and information capacity. A method for calculating a compact-size Offner spectrometer was developed having the advantages of its compactness, maintaining high optical characteristics and having relatively low cost in comparison with the large-size equipment. The method is based on using the Rowland circles and the coma and astigmatism correction in the image plane. Analytical expressions were obtained making it possible to calculate design parameters of the spectrometer optical scheme. Two examples of calculating optical systems for visible and infrared ranges were considered. Calculated systems were simulated in the Zemax software program. To evaluate the synthesized optical models image quality, the confusion spot radius in the image plane was used. It is demonstrated that the confusion spot radius value does not exceed the value of the radiation receiver pixel size in the considered spectral ranges. Optimization was carried out for the IR spectrometer according to overall dimensions in order to improve the design manufacturability. It is shown that the principles laid down in the method development are effective, and the method itself could be used in design and development of new small-size hyperspectral optoelectronic equipment
Significant advances in development of the optical wavelength range require high-quality optical systems to create optoelectronic equipment on their basis characterized by high speed and information capacity. A method for calculating a compact-size Offner spectrometer was developed having the advantages of its compactness, maintaining high optical characteristics and having relatively low cost in comparison with the large-size equipment. The method is based on using the Rowland circles and the coma and astigmatism correction in the image plane. Analytical expressions were obtained making it possible to calculate design parameters of the spectrometer optical scheme. Two examples of calculating optical systems for visible and infrared ranges were considered. Calculated systems were simulated in the Zemax software program. To evaluate the synthesized optical models image quality, the confusion spot radius in the image plane was used. It is demonstrated that the confusion spot radius value does not exceed the value of the radiation receiver pixel size in the considered spectral ranges. Optimization was carried out for the IR spectrometer according to overall dimensions in order to improve the design manufacturability. It is shown that the principles laid down in the method development are effective, and the method itself could be used in design and development of new small-size hyperspectral optoelectronic equipment
The paper considers relevance of creating the small-sized high-resolution optical systems for the small spacecraft. It describes the current state of domestic and foreign systems engaged in the Earth remote sensing of the CubeSat format that confirmed the need to develop domestic multi-component satellite constellations. Unlike the large-sized spacecraft, the CubeSat standard implies introduction of the micro-format satellites. In order to reduce overall dimensions of the system and minimize the chromatic aberrations effect on the image quality in selecting the optical scheme components, mirrors are preferred, as a rule. Among all possible design schemes, the Ritchey --- Chretien optical scheme is the most promising due to its simplicity, small overall dimensions and high optical performance in a wide spectral range for the CubeSat satellites. Main optical and technical parameters, as well as the optical system characteristics for a small spacecraft are provided. For typical systems, the paper proposes a calculation technique; and a simulation model was created making it possible to assess the optical system image quality. The root-mean-square value of the point scatter spot radius in the image plane was taken as the criterion in evaluating the image quality. It is shown that the Ritchey --- Chretien optical scheme and its elements are characterized by its relative easiness in implementation due to using the studied technologies of the lens and mirror elements manufacture and ensuring high image quality and required overall dimensions, which makes it possible to use them in creating a multi-component satellite constellation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.