Sustainable transportation systems play a key role in the socio-economic development of a country. Microscopic simulation models are becoming increasingly useful tools in designing, optimizing, and evaluating the sustainability of transportation systems and concerned management strategies. VISSIM, a microscopic traffic simulation software, has gained rapid recognition in the field of traffic simulation. However, default values for different input parameters used during simulation need to be tested to ensure a realistic replication for local traffic conditions. This paper attempts to model driving behavior parameters using the microscopic simulation software VISSIM through a case study in the Khobar-Dammam metropolitan areas in Saudi Arabia. VISSIM default values for different sensitive parameters such as lane change distances, additive and multiplicative parts of desired safety distances, the number of preceding vehicles spotted, amber signal decisions, and minimum headway were identified to be most sensitive and significant parameters to be calibrated to precisely replicate field conditions. The simulation results using default values produced higher link speed, larger queue length, and shorter travel times than those observed in the field. However, measures of effectiveness (MOEs) obtained from calibrated models over desired simulation runs were comparable to those obtained from field surveys. All compared MOEs used to validate the model matched within a range of 5-10% to the field-observed values.