This version is available at https://strathprints.strath.ac.uk/54410/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
A Comparison of Artificial Driving Sounds for Automated Vehicles
ABSTRACTAs automated vehicles currently do not provide sufficient feedback relating to the primary driving task, drivers have no assurance that an automated vehicle has understood and can cope with upcoming traffic situations [16]. To address this we conducted two user evaluations to investigate auditory displays in automated vehicles using different types of sound cues related to the primary driving sounds: acceleration, deceleration/braking, gear changing and indicating. Our first study compared earcons, speech and auditory icons with existing vehicle sounds. Our findings suggested that earcons were an effective alternative to existing vehicle sounds for presenting information related to the primary driving task. Based on these findings a second study was conducted to further investigate earcons modulated by different sonic parameters to present primary driving sounds. We discovered that earcons containing naturally mapped sonic parameters such as pitch and timbre were as effective as existing sounds in a simulated automated vehicle.