The industrial removal of organosulfur impurities from fossil fuels relies on transition‐metal‐based catalysts in harsh conditions (ca. 400 °C, up to 100 bar H2), yet desulfurization (DS) of refractory alkyl dibenzothiophenes (DBTs) remains challenging. Here, we report that carbon‐supported potassium hydride (KH/C) enables efficient DS of DBTs in mild conditions, viz. >97 % conversion of DBTs is achieved at 165 °C in 3–6 h while the yields of respective biphenyls are 84–95 % by using only 15 % excess of KH per a C−S bond. In addition, KH/C allows to lower the concentration of 4,6‐Me2DBT in the mesitylene solution from 1000 ppm to <3 ppm (165 °C, 20 h) and provides deoxygenation, denitrogenation and catalytic aromatic hydrogenation reactions. DS of various sulfur heterocycles by using KH/C, a transition‐metal‐free material based on earth abundant elements, is viable at low temperature and has prospects for the further development towards decentralized removal of organosulfur species from fossil fuels.