Abstract. Background: Significant economic growth in many countries of the world can contribute to an increase in the speed of movement of modern and fundamentally new vehicles. This will increase the turnover of goods during the transportation of goods, revive international trade, increase the comfort of passengers and reduce their travel time.
Aim: The solution of this problem is the development and wide application of high-speed magnetic-levitation transport (HSMLT) with linear traction engines. It is promising to use linear induction motors (LIM) for the HSMLT drive, which can have various design versions. Linear induction motors come with a longitudinal, transverse and longitudinal-transverse closure of the magnetic flux. LIM inductors can be installed on both high-speed transport crews and in the HSMLT track structure, as it was done in the People’s Republic of China, where express trains on magnetic suspension connect Shanghai with the airport and reliably operate for more than 10 years. The main elements of the inductor of a linear induction motor are a magnetic core (ferromagnetic core) a multiphase (usually three-phase) winding. With the development of high-speed magnetic-levitation transport, the issues of improving the manufacturing technology of various HSMLT devices, including the methods for producing inductors of linear induction motors, will become increasingly relevant. Traditionally, LIM inductors are assembled from pre-manufactured individual parts.
Methods: An integral technology for manufacturing inductors of linear induction motors for high-speed magnetic-levitation transport is proposed and considered by the method of spraying materials onto a substrate through replaceable stencils. The new technology eliminates the alternate manufacture of individual assemblies and parts and their subsequent assembly to obtain a finished product. A method for determining the size of stencils for manufacturing one of the inductor variants of a linear induction motor is proposed as an example.
Conclusion: Integral manufacturing technology is promising for the creation of high-speed magnetic-levitation transport.