2018
DOI: 10.1080/15230406.2018.1510343
|View full text |Cite
|
Sign up to set email alerts
|

CarSenToGram: geovisual text analytics for exploring spatiotemporal variation in public discourse on Twitter

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
15

Year Published

2020
2020
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(22 citation statements)
references
References 23 publications
0
7
0
15
Order By: Relevance
“…Prior studies relative to the utility of social media in understanding public opinions show temporal and spatial variations [ 21 24 ]. Through the investigation of the geography of Twitter topics in London, Lansley and Longley (2016) [ 23 ] found that topics and attitudes expressed through tweets varied substantially across places and were associated with the demographic and socio-economic characters of the users.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Prior studies relative to the utility of social media in understanding public opinions show temporal and spatial variations [ 21 24 ]. Through the investigation of the geography of Twitter topics in London, Lansley and Longley (2016) [ 23 ] found that topics and attitudes expressed through tweets varied substantially across places and were associated with the demographic and socio-economic characters of the users.…”
Section: Introductionmentioning
confidence: 99%
“…Through the investigation of the geography of Twitter topics in London, Lansley and Longley (2016) [ 23 ] found that topics and attitudes expressed through tweets varied substantially across places and were associated with the demographic and socio-economic characters of the users. Koylu et al (2018) [ 21 ] investigated the online public discourse and sentiment across space and time towards an immigration policy implemented in 2017, and their study manifested that such policy highlighted important partisan division within U.S. states. The opinion variations on political topics can be attributed to the inferred characteristics of online users.…”
Section: Introductionmentioning
confidence: 99%
“…Sentiment analysis (SA) is a technique of identifying and extracting the sentiment associated with a piece of text data. It is an area of computational linguistics and NLP that analyses subjective information such as opinions and emotions expressed in the text [93]. Two primary methods (lexicon-based and corpus-based) are available for conducting SA.…”
Section: Sentiment Analysismentioning
confidence: 99%
“…migración fue caracterizada -entre otros-por puntos de vista extremos y racistas (Nail, 2016). Otro ejemplo de escalada en el discurso fue el provocado por la orden ejecutiva del presidente Donald Trump en enero de 2017, que se proponía inhibir el ingreso al suelo estadounidense de ciudadanos de siete "países musulmanes"; dicho evento fue motivo de una importante polarización en el debate público (Koylu et al, 2018). En su conjunto, estos eventos se dan en contextos nacionales caracterizados tradicionalmente por la instrumentación de la retórica migratoria por fuertes grupos tanto anti como promigrantes (Ferra y Nguyen, 2017;Koylu et al, 2018).…”
Section: Conflictos Migratorios Detonadores Del Discurso Públicounclassified
“…15, 2021 e-ISSN 2594-0279 https://doi.org/10.33679/rmi.v1i1.2172 3 esfera pública, se asiste a una profunda mutación de los medios detonadores del debate público accesible, transnacional y articulado de la modalidad presencial a virtual (Bouvier, 2019;Paulussen y Harder 2014). En el marco de esta dinámica, las redes sociales lograron posicionarse rápidamente al centro del paisaje mediático, involucrándose en polémicas trascendentes como en el caso del debate migratorio (Ferra y Nguyen, 2017;Koylu, Larson, Dietrich y Lee, 2018;Nguyen 2016). Como tecnología mediática, Twitter logra destacar a nivel global por su especificidad volcada a la interacción instantánea con contenidos cortos que convierten a esta plataforma en la favorita de gobernantes y gobernados (Bruns y Stieglitz, 2014;Meraz y Papacharissi, 2013;Tandoc y Johnson, 2016).…”
Section: Introductionunclassified