Floods are probably the most hazardous global natural event as well as the main cause of human losses and economic damage. They are often hard to predict, but their consequences may be reduced by taking the right precautions. In this sense, hydraulic infrastructures, such as dams, are generally the most widely used management elements to significantly mitigate this natural risk. However, others, such as linear ones, mainly ditches and canals, can both in themselves be potentially active risk-generating factors and vectors of flooding risk propagation. The aim of this research is to develop an accurate and detailed technique for assessing the intrinsic risk of these infrastructures due to flood events. This is performed based on two key factors: the proximity to urban areas and the water level reached in the infrastructures. Consequently, this research is developed through a double geomatic and hydraulic component organized into four steps: topological processing, parameter computation, risk calculation, and development of the Risk Colored Snake (RCS) technique. This was successfully applied to the network of irrigation ditches of Almoradí in Alicante (Spain), which is characterized by a high exposure level to flood hazards. RCS is a valuable tool to easily assess the potential risk of each section of the linear hydraulic infrastructures. By means of color-coding RCS, it is simpler for the end user to quickly detect potentially problematic locations in an accurate and detailed manner.