PurposeThe aim of the paper is to test and demonstrate the potential benefits in applying reinforcement learning instead of traditional methods to optimize the content of a company's mobile application to best help travellers finding their ideal flights. To this end, two approaches were considered and compared via simulation: standard randomized experiments or A/B testing and multi-armed bandits.Design/methodology/approachThe simulation of the two approaches to optimize the content of its mobile application and, consequently, increase flights conversions is illustrated as applied by Skyscanner, using R software.FindingsThe first results are about the comparison between the two approaches – A/B testing and multi-armed bandits – to identify the best one to achieve better results for the company. The second one is to gain experiences and suggestion in the application of the two approaches useful for other industries/companies.Research limitations/implicationsThe case study demonstrated, via simulation, the potential benefits to apply the reinforcement learning in a company. Finally, the multi-armed bandit was implemented in the company, but the period of the available data was limited, and due to its strategic relevance, the company cannot show all the findings.Practical implicationsThe right algorithm can change according to the situation and industry but would bring great benefits to the company's ability to surface content that is more relevant to users and help improving the experience for travellers. The study shows how to manage complexity and data to achieve good results.Originality/valueThe paper describes the approach used by an European leading company operating in the travel sector in understanding how to adapt reinforcement learning to its strategic goals. It presents a real case study and the simulation of the application of A/B testing and multi-armed bandit in Skyscanner; moreover, it highlights practical suggestion useful to other companies.