Ancient glacial sediments form major hydrocarbon plays in several parts of the world; most notably, North Africa, Latin America, and the Middle East. We have described a methodology for reconstructing broad-scale paleogeographies in just such a depositional system, using an extensive subsurface data set from the uppermost Ordovician glacial sediments of the Murzuq Basin of southwest Libya. Our workflow begins with the analysis of a large, high-quality 3D seismic data set, to understand the frequency content. Subsequently, optimum frequency bands are extracted, after applying spectral decomposition, and then recombined into an R (red) G (green) B (blue) blended cube. This volume is then treated as an image within which paleomorphological features can be distinguished and compared with modern glacial analogs. Mapping at different depths (time slices) of these features is then tied, by integration with core and image-log sedimentology, to specific depositional environments defined within the framework of a facies scheme developed using the well data and published outcrop studies. These depositional environments are extrapolated into areas with little or no well data using the spectral decomposition as a framework, always taking into account the significant difference in vertical resolution between the seismic data set and core-scale descriptions. The result of this methodology is a set of calibrated maps, at three different time depths (two-way time travel), indicating paleogeographic reconstructions of the glacial depositional environments in the study area and the evolution through time (at different depths/time slices 2D + 1) of these glacial settings.